
Scale-like powder made from dry & wet coating technologies

LeafPowderTM Introduction

Powder Material Strategic Business Unit OIKE & Co., Ltd.

Oct.2020

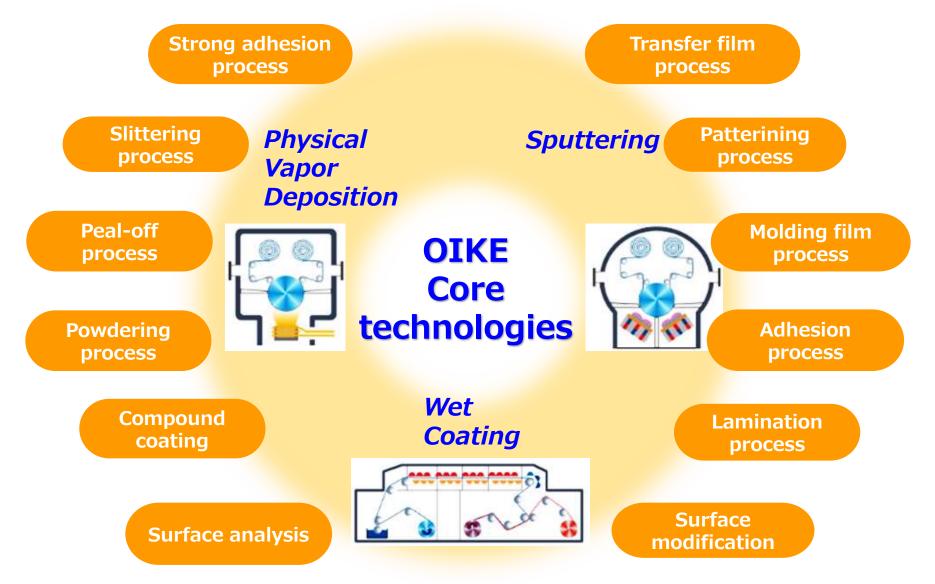
What's OIKE?

OIKE & Co., Ltd. was founded in Kyoto in 1876 as a manufacturer and seller of gold and silver thread.

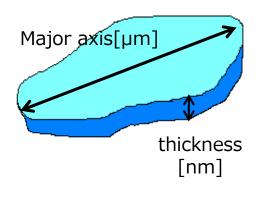
144 years

Wet & dry coating technology

The 1st vacuum vapor deposition apparatus

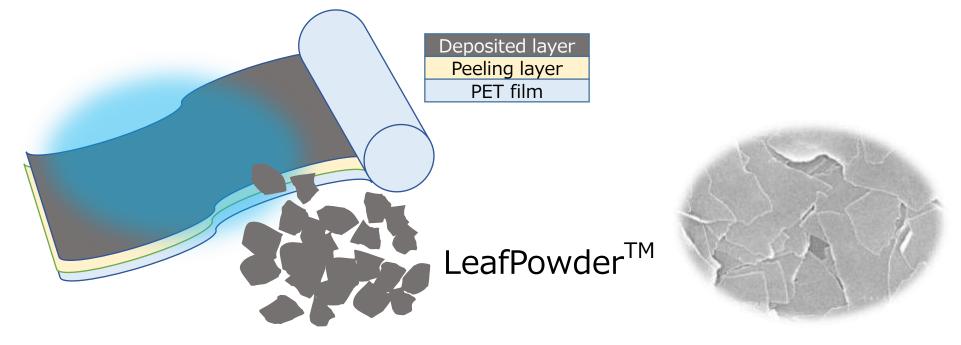

In 1956, OIKE first introduced Roll to Roll vacuum deposition system in Japan.

OIKE Core Technologies


Sub-technology & 2ndary fabrication technology

Introduction of LeafPowder[™]

LeafPowder[®] Characteristics



LeafPowder™

We produce **"LeafPowder[™]"** which is scale-like flake made from deposited layer by our dry and wet coating technologies.

1. Deposition on film \rightarrow 2. Peeling with solvent \rightarrow 3. Pulverization \rightarrow 4. Dispersion



For metallic design

 LeafPowder[™] Al scale-like Aluminum pigment for coating and printing to achieve metallic gloss and high specularity

Grade	thickness	contents	Ave. particle size	Dispersion solvent
Ultra high grade	10nm			Butyl acetate (standard)
High grade	20nm	10wt%	10µm 1µm	N-propyl acetate PGM
Standard	40nm			PGMA Butyl Cellosolve MMB, etc.

For metallic design

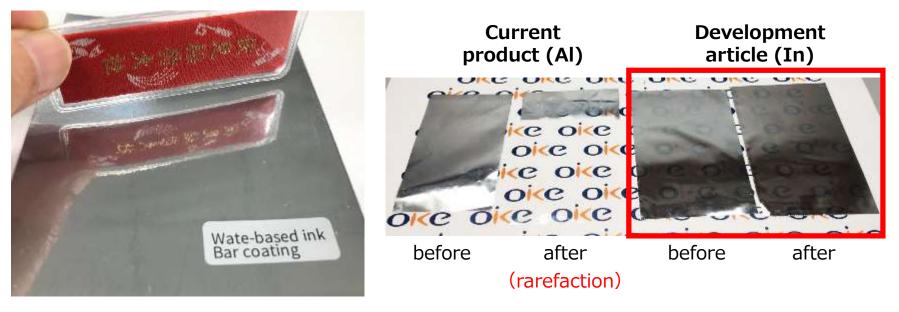
● LeafPowder[™] In

scale-like Indium pigment for water-based inks & coatings to achieve metallic gloss and high specularity

Preservation stability test

Testing conditions

Sample: LeafPowder dispersion (solid contents 2.5wt%, <u>IPA* : water = 1 : 1</u>) put in sealed vessel, measure inside pressure after $60^{\circ}C \times 1$ month. *IPA=isopropyl alcohol


Metal species	Inside pressure (60°C×1month)	appearance
In	Less than 0.2 kPa	No change
AI	Over 20 kPa	Chlorosis, gelation

Grade	content	Ave. particle size	Dispersion solvent
49CJ - 1120	20wt%	\sim 1µm	PGM CAS No.107-98-2

LeafPowderTM Indium (correspond to solvent, UV and water-based ink)

Overwhelming water resistant ability

Bar-coated sample of water-based ink

60°C water ×1month stability test result (deposited film)

Achieve overwhelming water resistant ability by OIKE film converting technologies

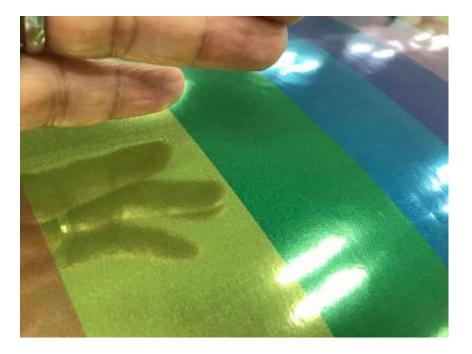
LeafPowder[™] Indium

(correspond to solvent, UV and water-based ink)

• Specification

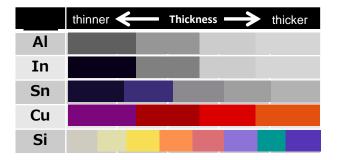
Grade	Solid contents	Particle size	Dispersant
49CJ-1120	20 wt%	\sim 1 μ m	PGM CAS No.107-98-2

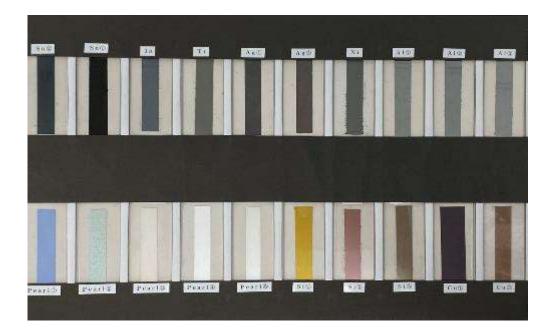
Inkjet printed sample of LeafPowder[®] In ink



Bar-coated sample of UV curing ink

Examples of LeafPowder[™] Indium

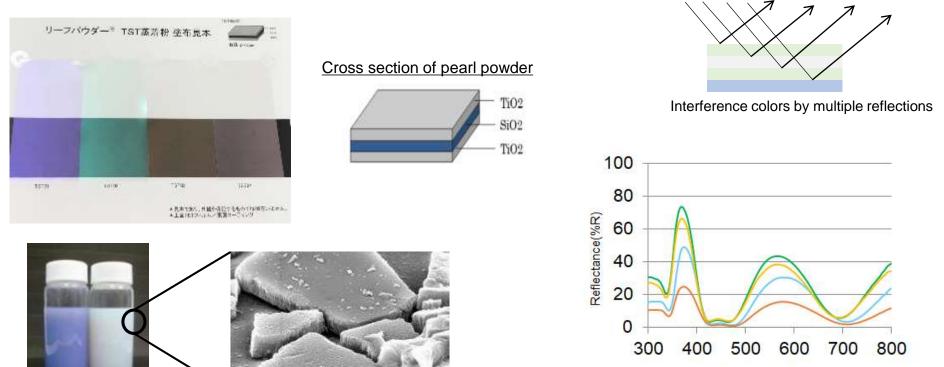

Mirror coating sample of LeafPowderTM In



Color variations of LeafPowder $^{\mbox{TM}}$ In by solvent IJ ink

For color design

- LeafPowder[™] various metal & compound Based on dry & wet coating technologies,
- In Sn ... sharpness & cool metallic Cu • Si ... various colors depend on thickness

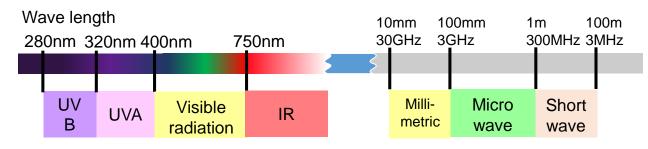


For pearl color design

LeafPowder[™] TST (prototype)
Based on vacuum deposition & sputtering technologies,

To achieve

- \checkmark Various interference colors by laminated layers
- ✓ Silky & seamless reflection colors



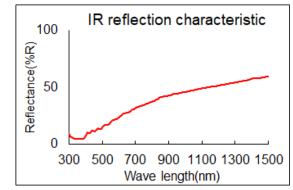
Structuring color principle

Wave length(nm)

For control of electromagnetic wave

 Electromagnetic wave control To control transmission & reflections for several wavelength by optical simulations

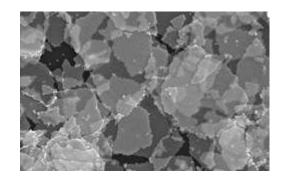
• LeafPowderTM TiO₂ (prototype)

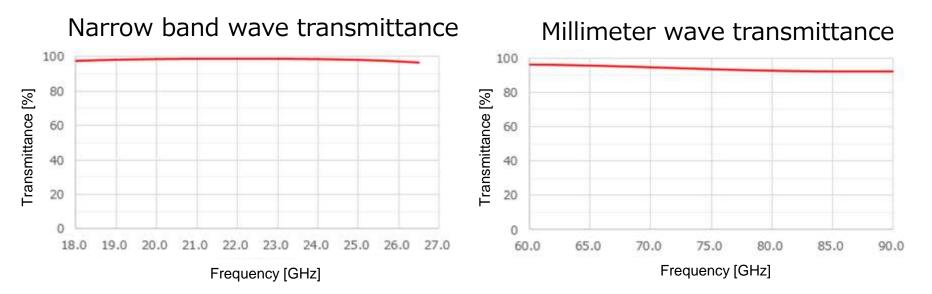

To achieve UV shielding

✓ Cosmetic (foundation, sun-screen powder, etc.)

✓Thinning out with comfortable & easy sliding feelings

LeafPowder[™] SP1-01 (prototype)
To achieve IR reflection
✓ Anti-heat, correspond to LiDAR


✓ Functional expression with low addition

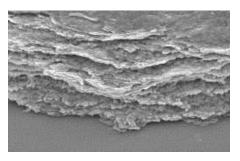

Electromagnetic wave control

● LeafPowderTM EWC04 (prototype)

Grade	Solid contents	Particle size	Dispersant
EWC-04	10 wt%	10µm	Butyl acetate CAS No.123-86-4

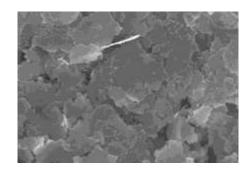
SEM image of LeafPowder[™] EWC-04

For electric conductivity


● LeafPowder[™] Ag

Nano & micron size powder

 \checkmark High aspect scale-like shape \rightarrow thinner & high adhesion


✓To form flexible micro-wiring

Grade	content	Ave. particle size	Dispersion solvent
47CE - 2055	55wt%	3µm	Terpineol
47CE - 5060	60wt%	3µm	Butyl acetate

Cross section SEM of LeafPowder Ag

 LeafPowder[™] Ni (prototype) Nano & micron size powder
✓ For MLCC internal electrodes
✓ Thinner & high continuity

Cross section SEM of LeafPowder Ni

Others

LeafPowder[™] Si
✓ For evaluation as LIB anode material

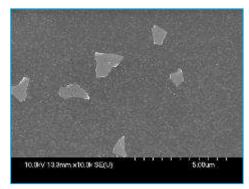
Grade	Contents	Ave. particle size	Dispersion solvent
14AJJ - 5010	10wt%	4µm	Butyl acetate

LeafPowder[™] Cr (prototype)
✓For metallic pigment

Grade	Contents	Ave. particle size	Dispersion solvent
24CJ - 5010	10wt%	\sim 1 μm	Butyl acetate

LeafPowder[™] CuSn (prototype)
✓ For antibacterial pigment

Grade	Contents	Ave. particle size	Dispersion solvent
SP3-01	10wt%	1µm	Butyl acetate

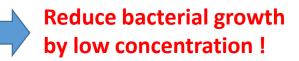

Antibacterial LeafPowder

● LeafPowder[™] CuSn

high aspect ratio scale-like powder to achieve both metallic image and antibacterial function

Result

CuSn		N	umber of bac	teria over tin	ne	
Cuan	initial 24hrs 1 24hrs 2 24hrs 3			Ave.		
E.coli	2.3×105	<10	<10	<10	<10	
St.aureus	2. 2×10 ⁵	<10	<10	<10	<10	
trol						
troi		N	umbor of boo	torio ovor tin	20	
control	initial		umber of bac			
	initial 2.3×10 ⁵	N 24hrs=1 1.2×10 ⁸	umber of bac 24hrs-2 1.5×10 ⁸	24hrs-3 1.4×10 ⁸	Ave.	
control		24hrs-1	24hrs-2	24hrs-3	Ave.	
control E.coli	2.3×10 ⁵	24hrs-1 1.2×10 ⁸	24hrs-2 1.5×10 ⁸	24hrs-3 1.4×10 ⁸	Ave. 1.4×10 ⁸	



SEM image of LeafPowder[™] CuSn

✓As additive for antibacterial function CuSn ink (solvent : binder : CuSn = 60 : 40 : 1)

Pactoria	Number of bacteria over time						
Bacteria Sample	Sample	initial	24hrs-1	24hrs-2	24hrs-3	Ave.	
E coli	CuSn ink	1.0 × 10 ⁵	7.3×10 ⁶	5.1×10 ⁶	7.9×10 ⁶	6.8×10 ⁶	
E.coli	Control	$1.0 imes10^5$	$1.4 imes10^7$	1.2×10^{7}	$1.6 imes 10^{7}$	$1.4 imes 10^{7}$	
St aurous	CuSn ink	1.1×10 ⁵	8.8×10 ²	1.0×10 ³	1.0 × 10 ³	9.6×10 ²	
St.aureus	Control	1.1×10^{5}	$1.4 imes10^5$	$1.7 imes10^5$	$1.8 imes10^5$	$1.6 imes10^5$	

(JIS Z 2801)

